Zonal flow generation in ion temperature gradient mode turbulence
نویسندگان
چکیده
In the present work the zonal flow ~ZF! growth rate in toroidal ion-temperature-gradient ~ITG! mode turbulence including the effects of elongation is studied analytically. The scaling of the ZF growth with plasma parameters is examined for typical tokamak parameter values. The physical model used for the toroidal ITG driven mode is based on the ion continuity and ion temperature equations whereas the ZF evolution is described by the vorticity equation. The results indicate that a large ZF growth is found close to marginal stability and for peaked density profiles and these effects may be enhanced by elongation. © 2002 American Institute of Physics. @DOI: 10.1063/1.1510450#
منابع مشابه
Quasilinear analysis of the zonal flow back - reaction on ion - temperature - gradient mode tur - bulence
There is strong evidence in favor for zonal flow suppression of the Ion-Temperature-Gradient (ITG) mode turbulence, specifically close to the linear stability threshold. The present letter attempts to analytically calculate the effects of zonal flow suppression of the ITG turbulence through deriving a modified dispersion relation including the back-reaction of the zonal flows on the ITG turbule...
متن کاملFine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence
Abstract. It is found in collisionless Electron Temperature Gradient (ETG) turbulence simulations that, while zonal flows are weak at early times, the zonal flows continue to grow algebraically (proportional to time). These fine-scale zonal flows have a radial wave number such that krρi > 1 and krρe < 1. Eventually, the zonal flows grow to a level that suppresses the turbulence due to ExB shear...
متن کاملUnderstanding nonlinear saturation in zonal-flow-dominated ion temperature gradient turbulence
We propose a quantitative model of ion temperature gradient driven turbulence in toroidal magnetized plasmas. In this model, the turbulence is regulated by zonal flows, i.e. mode saturation occurs by a zonal-flow-mediated energy cascade (‘shearing’), and zonal flow amplitude is controlled by nonlinear decay. Our model is tested in detail against numerical simulations to confirm that both its as...
متن کاملNonlinear saturation of collisionless trapped electron mode turbulence: zonal flows and zonal density
Gyrokinetic δf particle simulation is used to investigate the nonlinear saturation mechanisms in collisionless trapped electron mode (CTEM) turbulence. It is found that the importance of zonal flow is parameter sensitive and is well characterized by the shearing rate formula. The effect of zonal flow is empirically found to be sensitive to temperature ratio, magnetic shear and electron temperat...
متن کاملHigh frequency geodesic acoustic modes in electron scale turbulence
Experimental investigations has elucidated on the complex dynamics of the low to high (L-H) plasma confinement mode transition. Evidence of interactions between the the turbulence driven E⃗ × B⃗ zonal flow oscillation or Geodesic Acoustic Mode (GAM) [1], turbulence and the mean equilibrium flows during this transition was found. Furthermore, periodic modulation of flow and turbulence level with t...
متن کامل